61.3.9 problem 9
Internal
problem
ID
[12093]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.3.
Equations
Containing
Exponential
Functions
Problem
number
:
9
Date
solved
:
Tuesday, January 28, 2025 at 12:21:59 AM
CAS
classification
:
[_Riccati]
\begin{align*} y^{\prime }&=a \,{\mathrm e}^{k x} y^{2}+b \,{\mathrm e}^{s x} \end{align*}
✓ Solution by Maple
Time used: 0.003 (sec). Leaf size: 228
dsolve(diff(y(x),x)=a*exp(k*x)*y(x)^2+b*exp(s*x),y(x), singsol=all)
\[
y = -\frac {b \,{\mathrm e}^{s x} \left (\operatorname {BesselY}\left (\frac {s}{s +k}, \frac {2 \sqrt {a}\, \sqrt {b}\, {\mathrm e}^{\frac {x \left (s +k \right )}{2}}}{s +k}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {s}{s +k}, \frac {2 \sqrt {a}\, \sqrt {b}\, {\mathrm e}^{\frac {x \left (s +k \right )}{2}}}{s +k}\right )\right )}{\operatorname {BesselJ}\left (\frac {k +2 s}{s +k}, \frac {2 \sqrt {a}\, \sqrt {b}\, {\mathrm e}^{\frac {x \left (s +k \right )}{2}}}{s +k}\right ) \sqrt {a}\, \sqrt {b}\, {\mathrm e}^{\frac {x \left (s +k \right )}{2}}+\sqrt {b}\, \sqrt {a}\, {\mathrm e}^{\frac {x \left (s +k \right )}{2}} \operatorname {BesselY}\left (\frac {k +2 s}{s +k}, \frac {2 \sqrt {a}\, \sqrt {b}\, {\mathrm e}^{\frac {x \left (s +k \right )}{2}}}{s +k}\right ) c_{1} -s \left (\operatorname {BesselY}\left (\frac {s}{s +k}, \frac {2 \sqrt {a}\, \sqrt {b}\, {\mathrm e}^{\frac {x \left (s +k \right )}{2}}}{s +k}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {s}{s +k}, \frac {2 \sqrt {a}\, \sqrt {b}\, {\mathrm e}^{\frac {x \left (s +k \right )}{2}}}{s +k}\right )\right )}
\]
✓ Solution by Mathematica
Time used: 2.631 (sec). Leaf size: 859
DSolve[D[y[x],x]==a*Exp[k*x]*y[x]^2+b*Exp[s*x],y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
y(x)\to \frac {e^{-k x} \left (-k K_{\frac {k \log \left (e^{k+s}\right )}{(k+s)^2}}\left (2 \sqrt {-\frac {a b \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )-c_1 k (-1)^{\frac {k \log \left (e^{k+s}\right )}{(k+s)^2}} \operatorname {BesselI}\left (\frac {k \log \left (e^{k+s}\right )}{(k+s)^2},2 \sqrt {-\frac {a b \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )+(k+s) \sqrt {-\frac {a b \log ^2\left (e^{k+s}\right ) \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}}}{(k+s)^4}} \left (K_{\frac {k \log \left (e^{k+s}\right )-(k+s)^2}{(k+s)^2}}\left (2 \sqrt {-\frac {a b \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )+K_{\frac {k \log \left (e^{k+s}\right )}{(k+s)^2}+1}\left (2 \sqrt {-\frac {a b \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )-c_1 (-1)^{\frac {k \log \left (e^{k+s}\right )}{(k+s)^2}} \left (\operatorname {BesselI}\left (\frac {k \log \left (e^{k+s}\right )-(k+s)^2}{(k+s)^2},2 \sqrt {-\frac {a b \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )+\operatorname {BesselI}\left (\frac {k \log \left (e^{k+s}\right )}{(k+s)^2}+1,2 \sqrt {-\frac {a b \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )\right )\right )\right )}{2 a \left (K_{\frac {k \log \left (e^{k+s}\right )}{(k+s)^2}}\left (2 \sqrt {-\frac {a b \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )+c_1 (-1)^{\frac {k \log \left (e^{k+s}\right )}{(k+s)^2}} \operatorname {BesselI}\left (\frac {k \log \left (e^{k+s}\right )}{(k+s)^2},2 \sqrt {-\frac {a b \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )\right )} \\
y(x)\to \frac {e^{-k x} \left (-\frac {(k+s) \sqrt {-\frac {a b \log ^2\left (e^{k+s}\right ) \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}}}{(k+s)^4}} \left (\operatorname {BesselI}\left (\frac {k \log \left (e^{k+s}\right )-(k+s)^2}{(k+s)^2},2 \sqrt {-\frac {a b \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )+\operatorname {BesselI}\left (\frac {k \log \left (e^{k+s}\right )}{(k+s)^2}+1,2 \sqrt {-\frac {a b \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )\right )}{\operatorname {BesselI}\left (\frac {k \log \left (e^{k+s}\right )}{(k+s)^2},2 \sqrt {-\frac {a b \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )}-k\right )}{2 a} \\
\end{align*}