61.3.16 problem 16
Internal
problem
ID
[12100]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.3.
Equations
Containing
Exponential
Functions
Problem
number
:
16
Date
solved
:
Tuesday, January 28, 2025 at 12:22:59 AM
CAS
classification
:
[_Riccati]
\begin{align*} y^{\prime }&=a \,{\mathrm e}^{k x} y^{2}+b y+c \,{\mathrm e}^{s x}+d \,{\mathrm e}^{-k x} \end{align*}
✓ Solution by Maple
Time used: 0.004 (sec). Leaf size: 336
dsolve(diff(y(x),x)=a*exp(k*x)*y(x)^2+b*y(x)+c*exp(s*x)+d*exp(-k*x),y(x), singsol=all)
\[
y = -\frac {{\mathrm e}^{-k x} \left (-2 a \sqrt {c}\, \left (\operatorname {BesselY}\left (\frac {\sqrt {-4 a d +b^{2}+2 b k +k^{2}}+s +k}{s +k}, \frac {2 \sqrt {a}\, \sqrt {c}\, {\mathrm e}^{\frac {x \left (s +k \right )}{2}}}{s +k}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {\sqrt {-4 a d +b^{2}+2 b k +k^{2}}+s +k}{s +k}, \frac {2 \sqrt {a}\, \sqrt {c}\, {\mathrm e}^{\frac {x \left (s +k \right )}{2}}}{s +k}\right )\right ) {\mathrm e}^{\frac {x \left (s +k \right )}{2}}+\sqrt {a}\, \left (\operatorname {BesselY}\left (\frac {\sqrt {-4 a d +b^{2}+2 b k +k^{2}}}{s +k}, \frac {2 \sqrt {a}\, \sqrt {c}\, {\mathrm e}^{\frac {x \left (s +k \right )}{2}}}{s +k}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {\sqrt {-4 a d +b^{2}+2 b k +k^{2}}}{s +k}, \frac {2 \sqrt {a}\, \sqrt {c}\, {\mathrm e}^{\frac {x \left (s +k \right )}{2}}}{s +k}\right )\right ) \left (\sqrt {-4 a d +b^{2}+2 b k +k^{2}}+b +k \right )\right )}{a^{{3}/{2}} \left (2 \operatorname {BesselY}\left (\frac {\sqrt {-4 a d +b^{2}+2 b k +k^{2}}}{s +k}, \frac {2 \sqrt {a}\, \sqrt {c}\, {\mathrm e}^{\frac {x \left (s +k \right )}{2}}}{s +k}\right ) c_{1} +2 \operatorname {BesselJ}\left (\frac {\sqrt {-4 a d +b^{2}+2 b k +k^{2}}}{s +k}, \frac {2 \sqrt {a}\, \sqrt {c}\, {\mathrm e}^{\frac {x \left (s +k \right )}{2}}}{s +k}\right )\right )}
\]
✓ Solution by Mathematica
Time used: 8.249 (sec). Leaf size: 1636
DSolve[D[y[x],x]==a*Exp[k*x]*y[x]^2+b*y[x]+c*Exp[s*x]+d*Exp[-k*x],y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
y(x)\to \frac {e^{-k x} \left (-\left ((b+k) K_{\frac {\sqrt {\left (b^2+2 k b+k^2-4 a d\right ) (k+s)^4 \log ^2\left (e^{k+s}\right )}}{(k+s)^4}}\left (2 \sqrt {-\frac {a c \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )\right )+(-1)^{\frac {k^4+4 s k^3+6 s^2 k^2+4 s^3 k+s^4+\sqrt {\left (b^2+2 k b+k^2-4 a d\right ) (k+s)^4 \log ^2\left (e^{k+s}\right )}}{(k+s)^4}} (b+k) \operatorname {BesselI}\left (\frac {\sqrt {\left (b^2+2 k b+k^2-4 a d\right ) (k+s)^4 \log ^2\left (e^{k+s}\right )}}{(k+s)^4},2 \sqrt {-\frac {a c \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right ) c_1+(k+s) \left (K_{-\frac {k^4+4 s k^3+6 s^2 k^2+4 s^3 k+s^4-\sqrt {\left (b^2+2 k b+k^2-4 a d\right ) (k+s)^4 \log ^2\left (e^{k+s}\right )}}{(k+s)^4}}\left (2 \sqrt {-\frac {a c \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )+K_{\frac {k^4+4 s k^3+6 s^2 k^2+4 s^3 k+s^4+\sqrt {\left (b^2+2 k b+k^2-4 a d\right ) (k+s)^4 \log ^2\left (e^{k+s}\right )}}{(k+s)^4}}\left (2 \sqrt {-\frac {a c \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )+(-1)^{\frac {k^4+4 s k^3+6 s^2 k^2+4 s^3 k+s^4+\sqrt {\left (b^2+2 k b+k^2-4 a d\right ) (k+s)^4 \log ^2\left (e^{k+s}\right )}}{(k+s)^4}} \left (\operatorname {BesselI}\left (-\frac {k^4+4 s k^3+6 s^2 k^2+4 s^3 k+s^4-\sqrt {\left (b^2+2 k b+k^2-4 a d\right ) (k+s)^4 \log ^2\left (e^{k+s}\right )}}{(k+s)^4},2 \sqrt {-\frac {a c \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )+\operatorname {BesselI}\left (\frac {k^4+4 s k^3+6 s^2 k^2+4 s^3 k+s^4+\sqrt {\left (b^2+2 k b+k^2-4 a d\right ) (k+s)^4 \log ^2\left (e^{k+s}\right )}}{(k+s)^4},2 \sqrt {-\frac {a c \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )\right ) c_1\right ) \sqrt {-\frac {a c \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )}{2 a \left (K_{\frac {\sqrt {\left (b^2+2 k b+k^2-4 a d\right ) (k+s)^4 \log ^2\left (e^{k+s}\right )}}{(k+s)^4}}\left (2 \sqrt {-\frac {a c \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )-(-1)^{\frac {k^4+4 s k^3+6 s^2 k^2+4 s^3 k+s^4+\sqrt {\left (b^2+2 k b+k^2-4 a d\right ) (k+s)^4 \log ^2\left (e^{k+s}\right )}}{(k+s)^4}} \operatorname {BesselI}\left (\frac {\sqrt {\left (b^2+2 k b+k^2-4 a d\right ) (k+s)^4 \log ^2\left (e^{k+s}\right )}}{(k+s)^4},2 \sqrt {-\frac {a c \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right ) c_1\right )} \\
y(x)\to \frac {e^{-k x} \left (-(b+k) (k+s)^3 \sqrt {-\frac {a c \log ^2\left (e^{k+s}\right ) \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}}}{(k+s)^4}} \operatorname {BesselI}\left (\frac {\sqrt {\left (b^2+2 k b+k^2-4 a d\right ) (k+s)^4 \log ^2\left (e^{k+s}\right )}}{(k+s)^4},2 \sqrt {-\frac {a c \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )+a c \log ^2\left (e^{k+s}\right ) \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \operatorname {BesselI}\left (\frac {k^4+4 s k^3+6 s^2 k^2+4 s^3 k+s^4+\sqrt {\left (b^2+2 k b+k^2-4 a d\right ) (k+s)^4 \log ^2\left (e^{k+s}\right )}}{(k+s)^4},2 \sqrt {-\frac {a c \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )+a c \log ^2\left (e^{k+s}\right ) \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \operatorname {BesselI}\left (\frac {k^4+4 s k^3+6 s^2 k^2+4 s^3 k+s^4+\sqrt {\left (b^2+2 k b+k^2-4 a d\right ) (k+s)^4 \log ^2\left (e^{k+s}\right )}}{(k+s)^4}-2,2 \sqrt {-\frac {a c \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )\right )}{2 a (k+s)^3 \sqrt {-\frac {a c \log ^2\left (e^{k+s}\right ) \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}}}{(k+s)^4}} \operatorname {BesselI}\left (\frac {\sqrt {\left (b^2+2 k b+k^2-4 a d\right ) (k+s)^4 \log ^2\left (e^{k+s}\right )}}{(k+s)^4},2 \sqrt {-\frac {a c \left (\left (e^{k+s}\right )^x\right )^{\frac {k+s}{\log \left (e^{k+s}\right )}} \log ^2\left (e^{k+s}\right )}{(k+s)^4}}\right )} \\
\end{align*}