61.3.18 problem 18

Internal problem ID [12102]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number : 18
Date solved : Tuesday, January 28, 2025 at 12:23:06 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{k x} y^{2}+b y+c \,{\mathrm e}^{k n x}+d \,{\mathrm e}^{k \left (2 n +1\right ) x} \end{align*}

Solution by Maple

dsolve(diff(y(x),x)=a*exp(k*x)*y(x)^2+b*y(x)+c*exp(k*n*x)+d*exp(k*(2*n+1)*x),y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 11.567 (sec). Leaf size: 2504

DSolve[D[y[x],x]==a*Exp[k*x]*y[x]^2+b*y[x]+c*Exp[k*n*x]+d*Exp[k*(2*n+1)*x],y[x],x,IncludeSingularSolutions -> True]
 

Too large to display