7.25.4 problem 4

Internal problem ID [624]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 5. Linear systems of differential equations. Section 5.4 (The eigenvalue method for homogeneous systems). Problems at page 378
Problem number : 4
Date solved : Monday, January 27, 2025 at 02:56:28 AM
CAS classification : system_of_ODEs

\begin{align*} x_{1}^{\prime }\left (t \right )&=4 x_{1} \left (t \right )+x_{2} \left (t \right )\\ x_{2}^{\prime }\left (t \right )&=6 x_{1} \left (t \right )-x_{2} \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.014 (sec). Leaf size: 34

dsolve([diff(x__1(t),t)=4*x__1(t)+x__2(t),diff(x__2(t),t)=6*x__1(t)-x__2(t)],singsol=all)
 
\begin{align*} x_{1} \left (t \right ) &= c_1 \,{\mathrm e}^{5 t}+{\mathrm e}^{-2 t} c_2 \\ x_{2} \left (t \right ) &= c_1 \,{\mathrm e}^{5 t}-6 \,{\mathrm e}^{-2 t} c_2 \\ \end{align*}

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 71

DSolve[{D[x1[t],t]==4*x1[t]+x2[t],D[x2[t],t]==6*x1[t]-x2[t]},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} \text {x1}(t)\to \frac {1}{7} e^{-2 t} \left (c_1 \left (6 e^{7 t}+1\right )+c_2 \left (e^{7 t}-1\right )\right ) \\ \text {x2}(t)\to \frac {1}{7} e^{-2 t} \left (6 c_1 \left (e^{7 t}-1\right )+c_2 \left (e^{7 t}+6\right )\right ) \\ \end{align*}