61.4.11 problem 32

Internal problem ID [12116]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number : 32
Date solved : Tuesday, January 28, 2025 at 12:25:18 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}-a \,x^{n} \left (b \,{\mathrm e}^{\lambda x}+c \right ) y+c \,x^{n} \end{align*}

Solution by Maple

dsolve(diff(y(x),x)=a*x^n*y(x)^2-a*x^n*(b*exp(lambda*x)+c)*y(x)+c*x^n,y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[D[y[x],x]==a*x^n*y[x]^2-a*x^n*(b*Exp[\[Lambda]*x]+c)*y[x]+c*x^n,y[x],x,IncludeSingularSolutions -> True]
 

Not solved