7.8.32 problem 54

Internal problem ID [246]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.1 (Introduction. Second order linear equations). Problems at page 111
Problem number : 54
Date solved : Tuesday, March 04, 2025 at 11:06:15 AM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} 4 x^{2} y^{\prime \prime }+8 x y^{\prime }-3 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 15
ode:=4*x^2*diff(diff(y(x),x),x)+8*x*diff(y(x),x)-3*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_2 \,x^{2}+c_1}{x^{{3}/{2}}} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 20
ode=4*x^2*D[y[x],{x,2}]+8*x*D[y[x],x]-3*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_2 x^2+c_1}{x^{3/2}} \]
Sympy. Time used: 0.155 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*Derivative(y(x), (x, 2)) + 8*x*Derivative(y(x), x) - 3*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x^{\frac {3}{2}}} + C_{2} \sqrt {x} \]