61.7.1 problem 1

Internal problem ID [12152]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-1. Equations Containing Logarithmic Functions
Problem number : 1
Date solved : Tuesday, January 28, 2025 at 12:44:47 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=a \ln \left (x \right )^{n} y^{2}+b m \,x^{m -1}-a \,b^{2} x^{2 m} \ln \left (x \right )^{n} \end{align*}

Solution by Maple

dsolve(diff(y(x),x)=a*(ln(x))^n*y(x)^2+b*m*x^(m-1)-a*b^2*x^(2*m)*(ln(x))^n,y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[D[y[x],x]==a*(Log[x])^n*y[x]^2+b*m*x^(m-1)-a*b^2*x^(2*m)*(Log[x])^n,y[x],x,IncludeSingularSolutions -> True]
 

Not solved