60.7.188 problem 1810 (book 6.219)

Internal problem ID [11738]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1810 (book 6.219)
Date solved : Thursday, March 13, 2025 at 09:23:09 PM
CAS classification : [NONE]

\begin{align*} \left (c +2 b x +a \,x^{2}+y^{2}\right )^{2} y^{\prime \prime }+d y&=0 \end{align*}

Maple. Time used: 0.138 (sec). Leaf size: 336
ode:=(c+2*b*x+a*x^2+y(x)^2)^2*diff(diff(y(x),x),x)+d*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \operatorname {RootOf}\left (-a \arctan \left (\frac {a x +b}{\sqrt {a c -b^{2}}}\right )+a \left (\int _{}^{\textit {\_Z}}\frac {\sqrt {\left (\textit {\_f}^{2}+1\right ) \left (-\textit {\_f}^{4} a c +\textit {\_f}^{4} b^{2}+c_{1} \textit {\_f}^{2} a^{2}-\textit {\_f}^{2} a c +\textit {\_f}^{2} b^{2}+c_{1} a^{2}+d \right )}}{-\textit {\_f}^{4} a c +\textit {\_f}^{4} b^{2}+c_{1} \textit {\_f}^{2} a^{2}-\textit {\_f}^{2} a c +\textit {\_f}^{2} b^{2}+c_{1} a^{2}+d}d \textit {\_f} \right ) \sqrt {a c -b^{2}}+c_{2} \sqrt {a c -b^{2}}\right ) \sqrt {a \,x^{2}+2 b x +c} \\ y &= \operatorname {RootOf}\left (-a \arctan \left (\frac {a x +b}{\sqrt {a c -b^{2}}}\right )-a \left (\int _{}^{\textit {\_Z}}\frac {\sqrt {\left (\textit {\_f}^{2}+1\right ) \left (-\textit {\_f}^{4} a c +\textit {\_f}^{4} b^{2}+c_{1} \textit {\_f}^{2} a^{2}-\textit {\_f}^{2} a c +\textit {\_f}^{2} b^{2}+c_{1} a^{2}+d \right )}}{-\textit {\_f}^{4} a c +\textit {\_f}^{4} b^{2}+c_{1} \textit {\_f}^{2} a^{2}-\textit {\_f}^{2} a c +\textit {\_f}^{2} b^{2}+c_{1} a^{2}+d}d \textit {\_f} \right ) \sqrt {a c -b^{2}}+c_{2} \sqrt {a c -b^{2}}\right ) \sqrt {a \,x^{2}+2 b x +c} \\ \end{align*}
Mathematica. Time used: 38.051 (sec). Leaf size: 260
ode=d*y[x] + (c + 2*b*x + a*x^2 + y[x]^2)^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [a \arctan \left (\frac {a x+b}{\sqrt {a c-b^2}}\right )+\sqrt {a c-b^2} \int _1^{\frac {y(x)}{\sqrt {c+x (2 b+a x)}}}\frac {a \left (K[2]^2+1\right )}{\sqrt {\left (K[2]^2+1\right ) \left (d+\left (K[2]^2+1\right ) \left (c_1 a^2+\left (b^2-a c\right ) K[2]^2\right )\right )}}dK[2]&=c_2 \sqrt {a c-b^2},y(x)\right ] \\ \text {Solve}\left [a \arctan \left (\frac {a x+b}{\sqrt {a c-b^2}}\right )-\sqrt {a c-b^2} \int _1^{\frac {y(x)}{\sqrt {c+x (2 b+a x)}}}\frac {a \left (K[3]^2+1\right )}{\sqrt {\left (K[3]^2+1\right ) \left (d+\left (K[3]^2+1\right ) \left (c_1 a^2+\left (b^2-a c\right ) K[3]^2\right )\right )}}dK[3]&=c_2 \sqrt {a c-b^2},y(x)\right ] \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
d = symbols("d") 
y = Function("y") 
ode = Eq(d*y(x) + (a*x**2 + 2*b*x + c + y(x)**2)**2*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : solve: Cannot solve d*y(x) + (a*x**2 + 2*b*x + c + y(x)**2)**2*Derivative(y(x), (x, 2))