Internal
problem
ID
[11755]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1830
(book
6.239)
Date
solved
:
Thursday, March 13, 2025 at 09:44:10 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=3*x^2*diff(diff(y(x),x),x)^2-2*(3*x*diff(y(x),x)+y(x))*diff(diff(y(x),x),x)+4*diff(y(x),x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=4*D[y[x],x]^2 - 2*(y[x] + 3*x*D[y[x],x])*D[y[x],{x,2}] + 3*x^2*D[y[x],{x,2}]^2 == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x**2*Derivative(y(x), (x, 2))**2 - (6*x*Derivative(y(x), x) + 2*y(x))*Derivative(y(x), (x, 2)) + 4*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -3*x*Derivative(y(x), (x, 2))/4 - sqrt((-3*x**2*Derivative(y(x), (x, 2)) + 8*y(x))*Derivative(y(x), (x, 2)))/4 + Derivative(y(x), x) cannot be solved by the factorable group method