61.11.3 problem 29

Internal problem ID [12203]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-3. Equations with tangent.
Problem number : 29
Date solved : Tuesday, January 28, 2025 at 01:07:13 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=a y^{2}+b \tan \left (x \right ) y+c \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 187

dsolve(diff(y(x),x)=a*y(x)^2+b*tan(x)*y(x)+c,y(x), singsol=all)
 
\[ y = \frac {\sec \left (x \right ) \left (-\left (\operatorname {LegendreQ}\left (\frac {\sqrt {4 a c +b^{2}}}{2}-\frac {1}{2}, -\frac {1}{2}+\frac {b}{2}, \sin \left (x \right )\right ) c_{1} +\operatorname {LegendreP}\left (\frac {\sqrt {4 a c +b^{2}}}{2}-\frac {1}{2}, -\frac {1}{2}+\frac {b}{2}, \sin \left (x \right )\right )\right ) \left (b +\sqrt {4 a c +b^{2}}\right ) \sin \left (x \right )+\left (\sqrt {4 a c +b^{2}}-b +2\right ) \left (\operatorname {LegendreQ}\left (\frac {\sqrt {4 a c +b^{2}}}{2}+\frac {1}{2}, -\frac {1}{2}+\frac {b}{2}, \sin \left (x \right )\right ) c_{1} +\operatorname {LegendreP}\left (\frac {\sqrt {4 a c +b^{2}}}{2}+\frac {1}{2}, -\frac {1}{2}+\frac {b}{2}, \sin \left (x \right )\right )\right )\right )}{2 \left (\operatorname {LegendreQ}\left (\frac {\sqrt {4 a c +b^{2}}}{2}-\frac {1}{2}, -\frac {1}{2}+\frac {b}{2}, \sin \left (x \right )\right ) c_{1} +\operatorname {LegendreP}\left (\frac {\sqrt {4 a c +b^{2}}}{2}-\frac {1}{2}, -\frac {1}{2}+\frac {b}{2}, \sin \left (x \right )\right )\right ) a} \]

Solution by Mathematica

Time used: 1.166 (sec). Leaf size: 608

DSolve[D[y[x],x]==a*y[x]^2+b*Tan[x]*y[x]+c,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {\sin (x) \left (\left (-b^3+3 b^2+b-3\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{4} \left (-b-\sqrt {b^2+4 a c}+2\right ),\frac {1}{4} \left (-b+\sqrt {b^2+4 a c}+2\right ),\frac {3-b}{2},\cos ^2(x)\right )+\cos (x) \left ((b+1) \cos (x) (a c+b-1) \operatorname {Hypergeometric2F1}\left (\frac {1}{4} \left (-b-\sqrt {b^2+4 a c}+6\right ),\frac {1}{4} \left (-b+\sqrt {b^2+4 a c}+6\right ),\frac {5-b}{2},\cos ^2(x)\right )+a i^{b+1} (b-3) c c_1 \cos ^b(x) \operatorname {Hypergeometric2F1}\left (\frac {1}{4} \left (b-\sqrt {b^2+4 a c}+4\right ),\frac {1}{4} \left (b+\sqrt {b^2+4 a c}+4\right ),\frac {b+3}{2},\cos ^2(x)\right )\right )\right )}{a (b-3) (b+1) \left (\cos (x) \operatorname {Hypergeometric2F1}\left (\frac {1}{4} \left (-b-\sqrt {b^2+4 a c}+2\right ),\frac {1}{4} \left (-b+\sqrt {b^2+4 a c}+2\right ),\frac {3-b}{2},\cos ^2(x)\right )-i i^b c_1 \cos ^b(x) \operatorname {Hypergeometric2F1}\left (\frac {1}{4} \left (b-\sqrt {b^2+4 a c}\right ),\frac {1}{4} \left (b+\sqrt {b^2+4 a c}\right ),\frac {b+1}{2},\cos ^2(x)\right )\right )} \\ y(x)\to -\frac {c \sin (x) \cos (x) \operatorname {Hypergeometric2F1}\left (\frac {1}{4} \left (b-\sqrt {b^2+4 a c}+4\right ),\frac {1}{4} \left (b+\sqrt {b^2+4 a c}+4\right ),\frac {b+3}{2},\cos ^2(x)\right )}{(b+1) \operatorname {Hypergeometric2F1}\left (\frac {1}{4} \left (b-\sqrt {b^2+4 a c}\right ),\frac {1}{4} \left (b+\sqrt {b^2+4 a c}\right ),\frac {b+1}{2},\cos ^2(x)\right )} \\ y(x)\to -\frac {c \sin (x) \cos (x) \operatorname {Hypergeometric2F1}\left (\frac {1}{4} \left (b-\sqrt {b^2+4 a c}+4\right ),\frac {1}{4} \left (b+\sqrt {b^2+4 a c}+4\right ),\frac {b+3}{2},\cos ^2(x)\right )}{(b+1) \operatorname {Hypergeometric2F1}\left (\frac {1}{4} \left (b-\sqrt {b^2+4 a c}\right ),\frac {1}{4} \left (b+\sqrt {b^2+4 a c}\right ),\frac {b+1}{2},\cos ^2(x)\right )} \\ \end{align*}