61.11.9 problem 35

Internal problem ID [12209]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-3. Equations with tangent.
Problem number : 35
Date solved : Tuesday, January 28, 2025 at 01:08:32 AM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]

\begin{align*} y^{\prime }&=a \tan \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 42

dsolve(diff(y(x),x)=a*tan(lambda*x+mu)^k*(y(x)-b*x^n-c)^2+b*n*x^(n-1),y(x), singsol=all)
 
\[ y = b \,x^{n}+c +\frac {1}{c_{1} -a \left (\int \left (-\frac {\tan \left (\mu \right )+\tan \left (\lambda x \right )}{\tan \left (\mu \right ) \tan \left (\lambda x \right )-1}\right )^{k}d x \right )} \]

Solution by Mathematica

Time used: 1.479 (sec). Leaf size: 75

DSolve[D[y[x],x]==a*Tan[\[Lambda]*x+mu]^k*(y[x]-b*x^n-c)^2+b*n*x^(n-1),y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {1}{-\frac {a \tan ^{k+1}(\mu +\lambda x) \operatorname {Hypergeometric2F1}\left (1,\frac {k+1}{2},\frac {k+3}{2},-\tan ^2(\mu +x \lambda )\right )}{(k+1) \lambda }+c_1}+b x^n+c \\ y(x)\to b x^n+c \\ \end{align*}