61.13.12 problem 58

Internal problem ID [12232]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-5. Equations containing combinations of trigonometric functions.
Problem number : 58
Date solved : Tuesday, January 28, 2025 at 01:30:57 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=y^{2}-\frac {\lambda ^{2}}{2}-\frac {3 \lambda ^{2} \tan \left (\lambda x \right )^{2}}{4}+a \cos \left (\lambda x \right )^{2} \sin \left (\lambda x \right )^{n} \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 1287

dsolve(diff(y(x),x)=y(x)^2-1/2*lambda^2-3/4*lambda^2*tan(lambda*x)^2+a*cos(lambda*x)^2*sin(lambda*x)^n,y(x), singsol=all)
 
\[ \text {Expression too large to display} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[D[y[x],x]==y[x]^2-1/2*\[Lambda]^2-3/4*\[Lambda]^2*Tan[\[Lambda]*x]^2+a*Cos[\[Lambda]*x]^2*Sin[\[Lambda]*x]^n,y[x],x,IncludeSingularSolutions -> True]
 

Not solved