Internal
problem
ID
[255]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
2.
Linear
Equations
of
Higher
Order.
Section
2.2
(General
solutions
of
linear
equations).
Problems
at
page
122
Problem
number
:
19
Date
solved
:
Tuesday, March 04, 2025 at 11:06:23 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
With initial conditions
ode:=x^3*diff(diff(diff(y(x),x),x),x)-3*x^2*diff(diff(y(x),x),x)+6*x*diff(y(x),x)-6*y(x) = 0; ic:=y(1) = 6, D(y)(1) = 14, (D@@2)(y)(1) = 22; dsolve([ode,ic],y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]-3*x^2*D[y[x],{x,2}]+6*x*D[y[x],x]-6*y[x]==0; ic={y[1]==6,Derivative[1][y][1] ==14,Derivative[2][y][1] ==22}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) - 3*x**2*Derivative(y(x), (x, 2)) + 6*x*Derivative(y(x), x) - 6*y(x),0) ics = {y(1): 6, Subs(Derivative(y(x), x), x, 1): 14, Subs(Derivative(y(x), (x, 2)), x, 1): 22} dsolve(ode,func=y(x),ics=ics)