60.9.14 problem 1869

Internal problem ID [11793]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 8, system of first order odes
Problem number : 1869
Date solved : Wednesday, March 05, 2025 at 03:07:06 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )+\frac {d}{d t}y \left (t \right )+2 x \left (t \right )+y \left (t \right )&={\mathrm e}^{2 t}+t\\ \frac {d}{d t}x \left (t \right )+\frac {d}{d t}y \left (t \right )-x \left (t \right )+3 y \left (t \right )&={\mathrm e}^{t}-1 \end{align*}

Maple. Time used: 0.075 (sec). Leaf size: 50
ode:=[diff(x(t),t)+diff(y(t),t)+2*x(t)+y(t) = exp(2*t)+t, diff(x(t),t)+diff(y(t),t)-x(t)+3*y(t) = exp(t)-1]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= \frac {3 t}{7}-\frac {1}{49}-\frac {{\mathrm e}^{t}}{6}+\frac {5 \,{\mathrm e}^{2 t}}{17}+{\mathrm e}^{-\frac {7 t}{5}} c_{1} \\ y \left (t \right ) &= -\frac {{\mathrm e}^{2 t}}{17}+\frac {t}{7}-\frac {26}{49}+\frac {{\mathrm e}^{t}}{4}+\frac {3 \,{\mathrm e}^{-\frac {7 t}{5}} c_{1}}{2} \\ \end{align*}
Mathematica. Time used: 0.193 (sec). Leaf size: 84
ode={D[x[t],t]+D[y[t],t]+2*x[t]+y[t]==Exp[2*t]+t,D[x[t],t]+D[y[t],t]-x[t]+3*y[t]==Exp[t]-1}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {3 t}{7}-\frac {e^t}{6}+\frac {5 e^{2 t}}{17}+\frac {5}{72} c_1 e^{-7 t/5}-\frac {1}{49} \\ y(t)\to \frac {t}{7}+\frac {e^t}{4}-\frac {e^{2 t}}{17}+\frac {5}{48} c_1 e^{-7 t/5}-\frac {26}{49} \\ \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-t + 2*x(t) + y(t) - exp(2*t) + Derivative(x(t), t) + Derivative(y(t), t),0),Eq(-x(t) + 3*y(t) - exp(t) + Derivative(x(t), t) + Derivative(y(t), t) + 1,0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)