Internal
problem
ID
[11796]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
8,
system
of
first
order
odes
Problem
number
:
1872
Date
solved
:
Wednesday, March 05, 2025 at 03:07:09 PM
CAS
classification
:
system_of_ODEs
ode:=[4*diff(x(t),t)+9*diff(y(t),t)+11*x(t)+31*y(t) = exp(t), 3*diff(x(t),t)+7*diff(y(t),t)+8*x(t)+24*y(t) = exp(2*t)]; dsolve(ode);
ode={4*D[x[t],t]+9*D[y[t],t]+11*x[t]+31*y[t]==Exp[t],3*D[x[t],t]+7*D[y[t],t]+8*x[t]+24*y[t]==Exp[2*t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(11*x(t) + 31*y(t) - exp(t) + 4*Derivative(x(t), t) + 9*Derivative(y(t), t),0),Eq(8*x(t) + 24*y(t) - exp(2*t) + 3*Derivative(x(t), t) + 7*Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)