Internal
problem
ID
[11818]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
8,
system
of
first
order
odes
Problem
number
:
1894
Date
solved
:
Friday, March 14, 2025 at 02:58:29 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(diff(x(t),t),t)+a*(diff(x(t),t)-diff(y(t),t))+b__1*x(t) = c__1*exp(I*omega*t), diff(diff(y(t),t),t)+a*(diff(y(t),t)-diff(x(t),t))+b__2*y(t) = c__2*exp(I*omega*t)]; dsolve(ode);
ode={D[x[t],{t,2}]+a*(D[x[t],t]-D[y[t],t])+b1*x[t]==c1*Exp[I*\[Omega]*t],D[y[t],{t,2}]+a*(D[y[t],t]-D[x[t],t])+b2*y[t]==c2*Exp[I*\[Omega]*t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
Too large to display
from sympy import * t = symbols("t") a = symbols("a") b__1 = symbols("b__1") b__2 = symbols("b__2") c__1 = symbols("c__1") c__2 = symbols("c__2") omega = symbols("omega") x = Function("x") y = Function("y") ode=[Eq(a*(Derivative(x(t), t) - Derivative(y(t), t)) + b__1*x(t) - c__1*exp(omega*t*complex(0, 1)) + Derivative(x(t), (t, 2)),0),Eq(a*(-Derivative(x(t), t) + Derivative(y(t), t)) + b__2*y(t) - c__2*exp(omega*t*complex(0, 1)) + Derivative(y(t), (t, 2)),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)
Timed Out