Internal
problem
ID
[11820]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
8,
system
of
first
order
odes
Problem
number
:
1896
Date
solved
:
Friday, March 14, 2025 at 02:58:30 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(diff(x(t),t),t)-2*diff(x(t),t)-diff(y(t),t)+y(t) = 0, diff(diff(diff(y(t),t),t),t)-diff(diff(y(t),t),t)+2*diff(x(t),t)-x(t) = t]; dsolve(ode);
ode={D[x[t],{t,2}]-2*D[x[t],t]-D[y[t],t]+y[t]==0,D[ y[t],{t,3}]-D[y[t],{t,2}]+2*D[x[t],t]-x[t]==t}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(y(t) - 2*Derivative(x(t), t) + Derivative(x(t), (t, 2)) - Derivative(y(t), t),0),Eq(-t - x(t) + 2*Derivative(x(t), t) - Derivative(y(t), (t, 2)) + Derivative(y(t), (t, 3)),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)