Internal
problem
ID
[11826]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
8,
system
of
first
order
odes
Problem
number
:
1902
Date
solved
:
Wednesday, March 05, 2025 at 03:07:29 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t)-y(t)+z(t) = 0, diff(y(t),t)-x(t)-y(t) = t, diff(z(t),t)-x(t)-z(t) = t]; dsolve(ode);
ode={D[x[t],t]-y[t]+z[t]==0,D[y[t],t]-x[t]-y[t]==t,D[z[t],t]-x[t]-z[t]==t}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-y(t) + z(t) + Derivative(x(t), t),0),Eq(-t - x(t) - y(t) + Derivative(y(t), t),0),Eq(-t - x(t) - z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)