Internal
problem
ID
[11830]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
8,
system
of
first
order
odes
Problem
number
:
1907
Date
solved
:
Wednesday, March 05, 2025 at 03:07:36 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = -3*x(t)+48*y(t)-28*z(t), diff(y(t),t) = -4*x(t)+40*y(t)-22*z(t), diff(z(t),t) = -6*x(t)+57*y(t)-31*z(t)]; dsolve(ode);
ode={D[x[t],t]==-3*x[t]+48*y[t]-28*z[t],D[y[t],t]==-4*x[t]+40*y[t]-22*z[t],D[z[t],t]==-6*x[t]+57*y[t]-31*z[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(3*x(t) - 48*y(t) + 28*z(t) + Derivative(x(t), t),0),Eq(4*x(t) - 40*y(t) + 22*z(t) + Derivative(y(t), t),0),Eq(6*x(t) - 57*y(t) + 31*z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)