60.10.6 problem 1918

Internal problem ID [11841]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 9, system of higher order odes
Problem number : 1918
Date solved : Wednesday, March 05, 2025 at 03:09:33 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=-x \left (t \right ) y \left (t \right )^{2}+x \left (t \right )+y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=x \left (t \right )^{2} y \left (t \right )-x \left (t \right )-y \left (t \right ) \end{align*}

Maple
ode:=[diff(x(t),t) = -x(t)*y(t)^2+x(t)+y(t), diff(y(t),t) = x(t)^2*y(t)-x(t)-y(t)]; 
dsolve(ode);
 
\[ \text {No solution found} \]
Mathematica
ode={D[x[t],t]==-x[t]*y[t]^2+x[t]+y[t],D[y[t],t]==x[t]^2*y[t]-x[t]-y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(x(t)*y(t)**2 - x(t) - y(t) + Derivative(x(t), t),0),Eq(-x(t)**2*y(t) + x(t) + y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
Timed Out