61.19.19 problem 19

Internal problem ID [12288]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number : 19
Date solved : Tuesday, January 28, 2025 at 02:09:29 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a \,{\mathrm e}^{\lambda x} g \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x}+a^{2} {\mathrm e}^{2 \lambda x} \left (g \left (x \right )-f \left (x \right )\right ) \end{align*}

Solution by Maple

dsolve(diff(y(x),x)=f(x)*y(x)^2-a*exp(lambda*x)*g(x)*y(x)+a*lambda*exp(lambda*x)+a^2*exp(2*lambda*x)*(g(x)-f(x)),y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[D[y[x],x]==f[x]*y[x]^2-a*Exp[\[Lambda]*x]*g[x]*y[x]+a*\[Lambda]*Exp[\[Lambda]*x]+a^2*Exp[2*\[Lambda]*x]*(g[x]-f[x]),y[x],x,IncludeSingularSolutions -> True]
 

Not solved