61.19.25 problem 25

Internal problem ID [12294]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number : 25
Date solved : Tuesday, January 28, 2025 at 02:20:02 AM
CAS classification : [_Riccati]

\begin{align*} x y^{\prime }&=f \left (x \right ) y^{2}+a -a^{2} f \left (x \right ) \ln \left (x \right )^{2} \end{align*}

Solution by Maple

dsolve(x*diff(y(x),x)=f(x)*y(x)^2+a-a^2*f(x)*(ln(x))^2,y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[x*D[y[x],x]==f[x]*y[x]^2+a-a^2*f[x]*(Log[x])^2,y[x],x,IncludeSingularSolutions -> True]
 

Not solved