61.19.27 problem 27

Internal problem ID [12296]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number : 27
Date solved : Tuesday, January 28, 2025 at 02:20:12 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a x \ln \left (x \right ) f \left (x \right ) y+a \ln \left (x \right )+a \end{align*}

Solution by Maple

dsolve(diff(y(x),x)=f(x)*y(x)^2-a*x*ln(x)*f(x)*y(x)+a*ln(x)+a,y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[D[y[x],x]==f[x]*y[x]^2-a*x*Log[x]*f[x]*y[x]+a*Log[x]+a,y[x],x,IncludeSingularSolutions -> True]
 

Not solved