7.9.13 problem 26 (b)

Internal problem ID [261]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.2 (General solutions of linear equations). Problems at page 122
Problem number : 26 (b)
Date solved : Tuesday, March 04, 2025 at 11:06:39 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+2 y&=6 x +4 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 25
ode:=diff(diff(y(x),x),x)+2*y(x) = 6*x+4; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (\sqrt {2}\, x \right ) c_2 +\cos \left (\sqrt {2}\, x \right ) c_1 +3 x +2 \]
Mathematica. Time used: 0.017 (sec). Leaf size: 32
ode=D[y[x],{x,2}]+2*y[x]==6*x+4; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to 3 x+c_1 \cos \left (\sqrt {2} x\right )+c_2 \sin \left (\sqrt {2} x\right )+2 \]
Sympy. Time used: 0.075 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-6*x + 2*y(x) + Derivative(y(x), (x, 2)) - 4,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (\sqrt {2} x \right )} + C_{2} \cos {\left (\sqrt {2} x \right )} + 3 x + 2 \]