61.19.30 problem 30

Internal problem ID [12299]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number : 30
Date solved : Tuesday, January 28, 2025 at 02:20:31 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a^{2} f \left (x \right )+a \lambda \sin \left (\lambda x \right )+a^{2} f \left (x \right ) \sin \left (\lambda x \right )^{2} \end{align*}

Solution by Maple

dsolve(diff(y(x),x)=f(x)*y(x)^2-a^2*f(x)+a*lambda*sin(lambda*x)+a^2*f(x)*sin(lambda*x)^2,y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[D[y[x],x]==f[x]*y[x]^2-a^2*f[x]+a*\[Lambda]*Sin[\[Lambda]*x]+a^2*f[x]*Sin[\[Lambda]*x]^2,y[x],x,IncludeSingularSolutions -> True]
 

Not solved