61.20.7 problem 40

Internal problem ID [12309]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-2. Equations containing arbitrary functions and their derivatives.
Problem number : 40
Date solved : Tuesday, January 28, 2025 at 02:34:46 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=f^{\prime }\left (x \right ) y^{2}+a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+a \,{\mathrm e}^{\lambda x} \end{align*}

Solution by Maple

Time used: 0.014 (sec). Leaf size: 117

dsolve(diff(y(x),x)=diff(f(x),x)*y(x)^2+a*exp(lambda*x)*f(x)*y(x)+a*exp(lambda*x),y(x), singsol=all)
 
\[ y = \frac {-f \,{\mathrm e}^{-\int \frac {-f^{2} {\mathrm e}^{\lambda x} a +2 f^{\prime }}{f}d x}-\int f^{\prime } {\mathrm e}^{a \left (\int f \,{\mathrm e}^{\lambda x}d x \right )-2 \left (\int \frac {f^{\prime }}{f}d x \right )}d x -c_{1}}{f \left (c_{1} +\int f^{\prime } {\mathrm e}^{a \left (\int f \,{\mathrm e}^{\lambda x}d x \right )-2 \left (\int \frac {f^{\prime }}{f}d x \right )}d x \right )} \]

Solution by Mathematica

Time used: 43.857 (sec). Leaf size: 319

DSolve[D[y[x],x]==D[ f[x],x]*y[x]^2+a*Exp[\[Lambda]*x]*f[x]*y[x]+a*Exp[\[Lambda]*x],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {a \exp \left (\int _1^{e^{x \lambda }}-\frac {a f\left (\frac {\log (K[1])}{\lambda }\right )}{\lambda }dK[1]\right ) \left (1+c_1 \int _1^{e^{x \lambda }}\exp \left (-\int _1^{K[2]}-\frac {a f\left (\frac {\log (K[1])}{\lambda }\right )}{\lambda }dK[1]\right )dK[2]\right )}{a f\left (\frac {\log \left (e^{\lambda x}\right )}{\lambda }\right ) \exp \left (\int _1^{e^{x \lambda }}-\frac {a f\left (\frac {\log (K[1])}{\lambda }\right )}{\lambda }dK[1]\right ) \left (1+c_1 \int _1^{e^{x \lambda }}\exp \left (-\int _1^{K[2]}-\frac {a f\left (\frac {\log (K[1])}{\lambda }\right )}{\lambda }dK[1]\right )dK[2]\right )-c_1 \lambda } \\ y(x)\to \frac {a \exp \left (\int _1^{e^{x \lambda }}-\frac {a f\left (\frac {\log (K[1])}{\lambda }\right )}{\lambda }dK[1]\right ) \int _1^{e^{x \lambda }}\exp \left (-\int _1^{K[2]}-\frac {a f\left (\frac {\log (K[1])}{\lambda }\right )}{\lambda }dK[1]\right )dK[2]}{\lambda -a f\left (\frac {\log \left (e^{\lambda x}\right )}{\lambda }\right ) \exp \left (\int _1^{e^{x \lambda }}-\frac {a f\left (\frac {\log (K[1])}{\lambda }\right )}{\lambda }dK[1]\right ) \int _1^{e^{x \lambda }}\exp \left (-\int _1^{K[2]}-\frac {a f\left (\frac {\log (K[1])}{\lambda }\right )}{\lambda }dK[1]\right )dK[2]} \\ \end{align*}