61.21.5 problem 5

Internal problem ID [12316]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number : 5
Date solved : Tuesday, January 28, 2025 at 02:35:03 AM
CAS classification : [_Riccati]

\begin{align*} x^{2} y^{\prime }&=x^{4} y^{2}+x^{2 n} f \left (a \,x^{n}+b \right )-\frac {n^{2}}{4}+\frac {1}{4} \end{align*}

Solution by Maple

dsolve(x^2*diff(y(x),x)=x^4*y(x)^2+x^(2*n)*f(a*x^n+b)+1/4*(1-n^2),y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[x^2*D[y[x],x]==x^4*y[x]^2+x^(2*n)*f[a*x^n+b]+1/4*(1-n^2),y[x],x,IncludeSingularSolutions -> True]
 

Not solved