Internal
problem
ID
[11958]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
31
Date
solved
:
Wednesday, March 05, 2025 at 03:16:04 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = a*x^n*y(x)^2-a*x^n*(b*x^m+c)*y(x)+b*m*x^(m-1); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==a*x^n*y[x]^2-a*x^n*(b*x^m+c)*y[x]+b*m*x^(m-1); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(a*x**n*(b*x**m + c)*y(x) - a*x**n*y(x)**2 - b*m*x**(m - 1) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE a*b*x**(m + n)*y(x) + a*c*x**n*y(x) - a*x**n*y(x)**2 - b*m*x**(m - 1) + Derivative(y(x), x) cannot be solved by the factorable group method