Internal
problem
ID
[11963]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
36
Date
solved
:
Wednesday, March 05, 2025 at 03:16:43 PM
CAS
classification
:
[_rational, _Riccati]
ode:=x*diff(y(x),x) = y(x)^2*a+(n+b*x^n)*y(x)+c*x^(2*n); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]==a*y[x]^2+(n+b*x^n)*y[x]+c*x^(2*n); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") n = symbols("n") y = Function("y") ode = Eq(-a*y(x)**2 - c*x**(2*n) + x*Derivative(y(x), x) - (b*x**n + n)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (a*y(x)**2 + b*x**n*y(x) + c*x**(2*n) + n*y(x))/x cannot be solved by the factorable group method