7.9.19 problem 41

Internal problem ID [267]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.2 (General solutions of linear equations). Problems at page 122
Problem number : 41
Date solved : Thursday, March 13, 2025 at 03:35:46 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x +1\right ) y^{\prime \prime }-\left (x +2\right ) y^{\prime }+y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&={\mathrm e}^{x} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 14
ode:=(1+x)*diff(diff(y(x),x),x)-(x+2)*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \left (x +2\right )+c_2 \,{\mathrm e}^{x} \]
Mathematica. Time used: 0.142 (sec). Leaf size: 29
ode=(x+1)*D[y[x],{x,2}]-(x+2)*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_1 e^{x+1}-2 c_2 (x+2)}{\sqrt {2 e}} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x + 1)*Derivative(y(x), (x, 2)) - (x + 2)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False