7.25.29 problem 40

Internal problem ID [649]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 5. Linear systems of differential equations. Section 5.4 (The eigenvalue method for homogeneous systems). Problems at page 378
Problem number : 40
Date solved : Monday, January 27, 2025 at 02:56:42 AM
CAS classification : system_of_ODEs

\begin{align*} x_{1}^{\prime }\left (t \right )&=2 x_{1} \left (t \right )\\ x_{2}^{\prime }\left (t \right )&=-21 x_{1} \left (t \right )-5 x_{2} \left (t \right )-27 x_{3} \left (t \right )-9 x_{4} \left (t \right )\\ x_{3}^{\prime }\left (t \right )&=5 x_{3} \left (t \right )\\ x_{4}^{\prime }\left (t \right )&=-21 x_{3} \left (t \right )-2 x_{4} \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.046 (sec). Leaf size: 60

dsolve([diff(x__1(t),t)=2*x__1(t),diff(x__2(t),t)=-21*x__1(t)-5*x__2(t)-27*x__3(t)-9*x__4(t),diff(x__3(t),t)=5*x__3(t),diff(x__4(t),t)=-21*x__3(t)-2*x__4(t)],singsol=all)
 
\begin{align*} x_{1} \left (t \right ) &= c_4 \,{\mathrm e}^{2 t} \\ x_{2} \left (t \right ) &= -3 c_4 \,{\mathrm e}^{2 t}-3 \,{\mathrm e}^{-2 t} c_2 +c_1 \,{\mathrm e}^{-5 t} \\ x_{3} \left (t \right ) &= c_3 \,{\mathrm e}^{5 t} \\ x_{4} \left (t \right ) &= -3 c_3 \,{\mathrm e}^{5 t}+{\mathrm e}^{-2 t} c_2 \\ \end{align*}

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 86

DSolve[{D[x1[t],t]==2*x1[t],D[x2[t],t]==-21*x1[t]-5*x2[t]-27*x3[t]-9*x4[t],D[x3[t],t]==5*x3[t],D[x4[t],t]==-21*x3[t]-2*x4[t]},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} \text {x1}(t)\to c_1 e^{2 t} \\ \text {x2}(t)\to e^{-5 t} \left (-3 c_1 \left (e^{7 t}-1\right )-3 (3 c_3+c_4) \left (e^{3 t}-1\right )+c_2\right ) \\ \text {x3}(t)\to c_3 e^{5 t} \\ \text {x4}(t)\to e^{-2 t} \left (c_4-3 c_3 \left (e^{7 t}-1\right )\right ) \\ \end{align*}