Internal
problem
ID
[12000]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
73
Date
solved
:
Wednesday, March 05, 2025 at 03:42:41 PM
CAS
classification
:
[_rational, _Riccati]
ode:=x*(a*x^k+b)*diff(y(x),x) = alpha*x^n*y(x)^2+(beta-a*n*x^k)*y(x)+gamma*x^(-n); dsolve(ode,y(x), singsol=all);
ode=x*(a*x^k+b)*D[y[x],x]==\[Alpha]*x^n*y[x]^2+(\[Beta]-a*n*x^k)*y[x]+\[Gamma]*x^(-n); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") BETA = symbols("BETA") Gamma = symbols("Gamma") a = symbols("a") b = symbols("b") k = symbols("k") n = symbols("n") y = Function("y") ode = Eq(-Alpha*x**n*y(x)**2 - Gamma/x**n + x*(a*x**k + b)*Derivative(y(x), x) - (BETA - a*n*x**k)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out