Internal
problem
ID
[12022]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.3.
Equations
Containing
Exponential
Functions
Problem
number
:
17
Date
solved
:
Wednesday, March 05, 2025 at 03:52:01 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = a*exp((mu+2*lambda)*x)*y(x)^2+(b*exp(x*(lambda+mu))-lambda)*y(x)+c*exp(x*mu); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==a*Exp[(2*\[Lambda]+\[Mu])*x]*y[x]^2+(b*Exp[(\[Lambda]+\[Mu])*x]-\[Lambda])*y[x]+c*Exp[\[Mu]*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") cg = symbols("cg") mu = symbols("mu") y = Function("y") ode = Eq(-a*y(x)**2*exp(x*(2*cg + mu)) - c*exp(mu*x) - (b*exp(x*(cg + mu)) - cg)*y(x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -a*y(x)**2*exp(x*(2*cg + mu)) - b*y(x)*exp(x*(cg + mu)) - c*exp(mu*x) + cg*y(x) + Derivative(y(x), x) cannot be solved by the factorable group method