Internal
problem
ID
[12024]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.3.
Equations
Containing
Exponential
Functions
Problem
number
:
19
Date
solved
:
Wednesday, March 05, 2025 at 03:52:12 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]
ode:=diff(y(x),x) = exp(x*mu)*(y(x)-b*exp(lambda*x))^2+b*lambda*exp(lambda*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==Exp[\[Mu]*x]*(y[x]-b*Exp[\[Lambda]*x])^2+b*\[Lambda]*Exp[\[Lambda]*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") b = symbols("b") cg = symbols("cg") mu = symbols("mu") y = Function("y") ode = Eq(-b*cg*exp(cg*x) - (-b*exp(cg*x) + y(x))**2*exp(mu*x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -b**2*exp(x*(2*cg + mu)) - b*cg*exp(cg*x) + 2*b*y(x)*exp(x*(cg + mu)) - y(x)**2*exp(mu*x) + Derivative(y(x), x) cannot be solved by the factorable group method