61.3.19 problem 19

Internal problem ID [12024]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number : 19
Date solved : Wednesday, March 05, 2025 at 03:52:12 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]

\begin{align*} y^{\prime }&={\mathrm e}^{\mu x} \left (y-b \,{\mathrm e}^{\lambda x}\right )^{2}+b \lambda \,{\mathrm e}^{\lambda x} \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 44
ode:=diff(y(x),x) = exp(x*mu)*(y(x)-b*exp(lambda*x))^2+b*lambda*exp(lambda*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left ({\mathrm e}^{x \left (\lambda +\mu \right )} c_{1} b \mu +b \,{\mathrm e}^{\lambda x}-c_{1} \mu ^{2}\right ) {\mathrm e}^{-\mu x}}{c_{1} \mu +{\mathrm e}^{-\mu x}} \]
Mathematica. Time used: 0.926 (sec). Leaf size: 40
ode=D[y[x],x]==Exp[\[Mu]*x]*(y[x]-b*Exp[\[Lambda]*x])^2+b*\[Lambda]*Exp[\[Lambda]*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to b e^{\lambda x}+\frac {\mu }{-e^{\mu x}+c_1 \mu } \\ y(x)\to b e^{\lambda x} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
b = symbols("b") 
cg = symbols("cg") 
mu = symbols("mu") 
y = Function("y") 
ode = Eq(-b*cg*exp(cg*x) - (-b*exp(cg*x) + y(x))**2*exp(mu*x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -b**2*exp(x*(2*cg + mu)) - b*cg*exp(cg*x) + 2*b*y(x)*exp(x*(cg + mu)) - y(x)**2*exp(mu*x) + Derivative(y(x), x) cannot be solved by the factorable group method