61.24.5 problem 5

Internal problem ID [12418]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Problem number : 5
Date solved : Tuesday, January 28, 2025 at 07:58:24 PM
CAS classification : [_rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y^{\prime } y+x \left (a \,x^{2}+b \right ) y+x&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 179

dsolve(y(x)*diff(y(x),x)+x*(a*x^2+b)*y(x)+x=0,y(x), singsol=all)
 
\[ \frac {2 \operatorname {AiryBi}\left (1, \frac {4 a y+\left (a \,x^{2}+b \right )^{2}}{4 a^{{2}/{3}}}\right ) a^{{1}/{3}} c_{1} +c_{1} \left (a \,x^{2}+b \right ) \operatorname {AiryBi}\left (\frac {4 a y+\left (a \,x^{2}+b \right )^{2}}{4 a^{{2}/{3}}}\right )-2 \operatorname {AiryAi}\left (1, \frac {4 a y+\left (a \,x^{2}+b \right )^{2}}{4 a^{{2}/{3}}}\right ) a^{{1}/{3}}-\left (a \,x^{2}+b \right ) \operatorname {AiryAi}\left (\frac {4 a y+\left (a \,x^{2}+b \right )^{2}}{4 a^{{2}/{3}}}\right )}{2 \operatorname {AiryBi}\left (1, \frac {4 a y+\left (a \,x^{2}+b \right )^{2}}{4 a^{{2}/{3}}}\right ) a^{{1}/{3}}+\operatorname {AiryBi}\left (\frac {4 a y+\left (a \,x^{2}+b \right )^{2}}{4 a^{{2}/{3}}}\right ) \left (a \,x^{2}+b \right )} = 0 \]

Solution by Mathematica

Time used: 0.314 (sec). Leaf size: 143

DSolve[y[x]*D[y[x],x]+x*(a*x^2+b)*y[x]+x==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\frac {\left (a x^2+b\right ) \operatorname {AiryAi}\left (\frac {\left (a x^2+b\right )^2+4 a y(x)}{4 a^{2/3}}\right )+2 \sqrt [3]{a} \operatorname {AiryAiPrime}\left (\frac {\left (a x^2+b\right )^2+4 a y(x)}{4 a^{2/3}}\right )}{\left (a x^2+b\right ) \operatorname {AiryBi}\left (\frac {\left (a x^2+b\right )^2+4 a y(x)}{4 a^{2/3}}\right )+2 \sqrt [3]{a} \operatorname {AiryBiPrime}\left (\frac {\left (a x^2+b\right )^2+4 a y(x)}{4 a^{2/3}}\right )}+c_1=0,y(x)\right ] \]