61.24.10 problem 10

Internal problem ID [12423]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Problem number : 10
Date solved : Tuesday, January 28, 2025 at 02:59:31 AM
CAS classification : [_rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y^{\prime } y&=\left (a \left (2 n +k \right ) x^{k}+b \right ) x^{n -1} y+\left (-a^{2} n \,x^{2 k}-a b \,x^{k}+c \right ) x^{2 n -1} \end{align*}

Solution by Maple

dsolve(y(x)*diff(y(x),x)=(a*(2*n+k)*x^k+b)*x^(n-1)*y(x)+(-a^2*n*x^(2*k)-a*b*x^k+c)*x^(2*n-1),y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[y[x]*D[y[x],x]==(a*(2*n+k)*x^k+b)*x^(n-1)*y[x]+(-a^2*n*x^(2*k)-a*b*x^k+c)*x^(2*n-1),y[x],x,IncludeSingularSolutions -> True]
 

Not solved