Internal
problem
ID
[12044]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.3-2.
Equations
with
power
and
exponential
functions
Problem
number
:
39
Date
solved
:
Wednesday, March 05, 2025 at 03:55:16 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = a*x^n*y(x)^2+lambda*x*y(x)+a*b^2*x^n*exp(lambda*x^2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==a*x^n*y[x]^2+\[Lambda]*x*y[x]+a*b^2*x^n*Exp[\[Lambda]*x^2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") cg = symbols("cg") n = symbols("n") y = Function("y") ode = Eq(-a*b**2*x**n*exp(cg*x**2) - a*x**n*y(x)**2 - cg*x*y(x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -a*b**2*x**n*exp(cg*x**2) - a*x**n*y(x)**2 - cg*x*y(x) + Derivative(y(x), x) cannot be solved by the lie group method