61.24.16 problem 16

Internal problem ID [12429]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Problem number : 16
Date solved : Tuesday, January 28, 2025 at 07:58:40 PM
CAS classification : [_rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} y^{\prime } y-a \left (1-\frac {b}{\sqrt {x}}\right ) y&=\frac {a^{2} b}{\sqrt {x}} \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 269

dsolve(y(x)*diff(y(x),x)-a*(1-b*x^(-1/2))*y(x)=a^2*b*x^(-1/2),y(x), singsol=all)
 
\[ \frac {\left (b^{2}\right )^{{1}/{3}} c_{1} 2^{{2}/{3}} \left (-\sqrt {x}+b \right ) \operatorname {AiryBi}\left (\frac {\left (-2 b a \sqrt {x}+\left (b^{2}+x \right ) a -y\right ) 2^{{1}/{3}}}{2 \left (b^{2}\right )^{{1}/{3}} a}\right )+2 \operatorname {AiryBi}\left (1, \frac {\left (-2 b a \sqrt {x}+\left (b^{2}+x \right ) a -y\right ) 2^{{1}/{3}}}{2 \left (b^{2}\right )^{{1}/{3}} a}\right ) c_{1} b -2 \operatorname {AiryAi}\left (1, \frac {\left (-2 b a \sqrt {x}+\left (b^{2}+x \right ) a -y\right ) 2^{{1}/{3}}}{2 \left (b^{2}\right )^{{1}/{3}} a}\right ) b -\left (b^{2}\right )^{{1}/{3}} 2^{{2}/{3}} \left (-\sqrt {x}+b \right ) \operatorname {AiryAi}\left (\frac {\left (-2 b a \sqrt {x}+\left (b^{2}+x \right ) a -y\right ) 2^{{1}/{3}}}{2 \left (b^{2}\right )^{{1}/{3}} a}\right )}{\left (b^{2}\right )^{{1}/{3}} 2^{{2}/{3}} \left (-\sqrt {x}+b \right ) \operatorname {AiryBi}\left (\frac {\left (-2 b a \sqrt {x}+\left (b^{2}+x \right ) a -y\right ) 2^{{1}/{3}}}{2 \left (b^{2}\right )^{{1}/{3}} a}\right )+2 \operatorname {AiryBi}\left (1, \frac {\left (-2 b a \sqrt {x}+\left (b^{2}+x \right ) a -y\right ) 2^{{1}/{3}}}{2 \left (b^{2}\right )^{{1}/{3}} a}\right ) b} = 0 \]

Solution by Mathematica

Time used: 1.799 (sec). Leaf size: 323

DSolve[y[x]*D[y[x],x]-a*(1-b*x^(-1/2))*y[x]==a^2*b*x^(-1/2),y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\frac {\sqrt [3]{-1} 2^{2/3} \sqrt [3]{\left (b-\sqrt {x}\right )^3} \operatorname {AiryAi}\left (\frac {\left (-\frac {1}{2}\right )^{2/3} \left (\left (b-\sqrt {x}\right )^3\right )^{2/3} \left (a \left (b-\sqrt {x}\right )^2-y(x)\right )}{a b^{2/3} \left (b-\sqrt {x}\right )^2}\right )-2 \sqrt [3]{b} \operatorname {AiryAiPrime}\left (\frac {\left (-\frac {1}{2}\right )^{2/3} \left (\left (b-\sqrt {x}\right )^3\right )^{2/3} \left (a \left (b-\sqrt {x}\right )^2-y(x)\right )}{a b^{2/3} \left (b-\sqrt {x}\right )^2}\right )}{\sqrt [3]{-1} 2^{2/3} \sqrt [3]{\left (b-\sqrt {x}\right )^3} \operatorname {AiryBi}\left (\frac {\left (-\frac {1}{2}\right )^{2/3} \left (\left (b-\sqrt {x}\right )^3\right )^{2/3} \left (a \left (b-\sqrt {x}\right )^2-y(x)\right )}{a b^{2/3} \left (b-\sqrt {x}\right )^2}\right )-2 \sqrt [3]{b} \operatorname {AiryBiPrime}\left (\frac {\left (-\frac {1}{2}\right )^{2/3} \left (\left (b-\sqrt {x}\right )^3\right )^{2/3} \left (a \left (b-\sqrt {x}\right )^2-y(x)\right )}{a b^{2/3} \left (b-\sqrt {x}\right )^2}\right )}+c_1=0,y(x)\right ] \]