61.5.12 problem 12

Internal problem ID [12057]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number : 12
Date solved : Wednesday, March 05, 2025 at 03:59:38 PM
CAS classification : [_Riccati]

\begin{align*} 2 y^{\prime }&=\left (a -\lambda +a \cosh \left (\lambda x \right )\right ) y^{2}+a +\lambda -a \cosh \left (\lambda x \right ) \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 101
ode:=2*diff(y(x),x) = (a-lambda+a*cosh(lambda*x))*y(x)^2+a+lambda-a*cosh(lambda*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\tanh \left (\frac {\lambda x}{2}\right ) \lambda \left (\int {\mathrm e}^{\frac {a \cosh \left (\lambda x \right )}{\lambda }} \left (-2 a +\operatorname {sech}\left (\frac {\lambda x}{2}\right )^{2} \lambda \right )d x \right ) c_{1} +2 \operatorname {sech}\left (\frac {\lambda x}{2}\right )^{2} {\mathrm e}^{\frac {a \cosh \left (\lambda x \right )}{\lambda }} c_{1} \lambda -2 \tanh \left (\frac {\lambda x}{2}\right )}{\lambda \left (\int {\mathrm e}^{\frac {a \cosh \left (\lambda x \right )}{\lambda }} \left (-2 a +\operatorname {sech}\left (\frac {\lambda x}{2}\right )^{2} \lambda \right )d x \right ) c_{1} -2} \]
Mathematica. Time used: 16.686 (sec). Leaf size: 338
ode=2*D[y[x],x]==(a-\[Lambda]+a*Cosh[\[Lambda]*x])*y[x]^2+a+\[Lambda]-a*Cosh[\[Lambda]*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {\text {sech}^2\left (\frac {\lambda x}{2}\right ) \left (c_1 \sinh (\lambda x) \int _1^x-e^{\frac {2 a \cosh ^2\left (\frac {1}{2} \lambda K[1]\right )}{\lambda }} (\cosh (\lambda K[1]) a+a-\lambda ) \text {sech}^2\left (\frac {1}{2} \lambda K[1]\right )dK[1]+4 c_1 e^{\frac {2 a \cosh ^2\left (\frac {\lambda x}{2}\right )}{\lambda }}+\sinh (\lambda x)\right )}{2+2 c_1 \int _1^x-e^{\frac {2 a \cosh ^2\left (\frac {1}{2} \lambda K[1]\right )}{\lambda }} (\cosh (\lambda K[1]) a+a-\lambda ) \text {sech}^2\left (\frac {1}{2} \lambda K[1]\right )dK[1]} \\ y(x)\to \frac {1}{2} \text {sech}^2\left (\frac {\lambda x}{2}\right ) \left (\frac {4 e^{\frac {2 a \cosh ^2\left (\frac {\lambda x}{2}\right )}{\lambda }}}{\int _1^x-e^{\frac {2 a \cosh ^2\left (\frac {1}{2} \lambda K[1]\right )}{\lambda }} (\cosh (\lambda K[1]) a+a-\lambda ) \text {sech}^2\left (\frac {1}{2} \lambda K[1]\right )dK[1]}+\sinh (\lambda x)\right ) \\ y(x)\to \frac {1}{2} \text {sech}^2\left (\frac {\lambda x}{2}\right ) \left (\frac {4 e^{\frac {2 a \cosh ^2\left (\frac {\lambda x}{2}\right )}{\lambda }}}{\int _1^x-e^{\frac {2 a \cosh ^2\left (\frac {1}{2} \lambda K[1]\right )}{\lambda }} (\cosh (\lambda K[1]) a+a-\lambda ) \text {sech}^2\left (\frac {1}{2} \lambda K[1]\right )dK[1]}+\sinh (\lambda x)\right ) \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
cg = symbols("cg") 
y = Function("y") 
ode = Eq(a*cosh(cg*x) - a - cg - (a*cosh(cg*x) + a - cg)*y(x)**2 + 2*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -a*y(x)**2*cosh(cg*x)/2 - a*y(x)**2/2 + a*cosh(cg*x)/2 - a/2 + cg*y(x)**2/2 - cg/2 + Derivative(y(x), x) cannot be solved by the factorable group method