Internal
problem
ID
[12077]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.5-1.
Equations
Containing
Logarithmic
Functions
Problem
number
:
5
Date
solved
:
Wednesday, March 05, 2025 at 04:14:10 PM
CAS
classification
:
[_Riccati]
ode:=x*diff(y(x),x) = x*y(x)^2-a^2*x*ln(beta*x)^(2*k)+a*k*ln(beta*x)^(k-1); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]==x*y[x]^2-a^2*x*(Log[\[Beta]*x])^(2*k)+a*k*(Log[\[Beta]*x])^(k-1); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") BETA = symbols("BETA") a = symbols("a") k = symbols("k") y = Function("y") ode = Eq(a**2*x*log(BETA*x)**(2*k) - a*k*log(BETA*x)**(k - 1) - x*y(x)**2 + x*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE a**2*log(BETA*x)**(2*k) - a*k*log(BETA*x)**(k - 1)/x - y(x)**2 + Derivative(y(x), x) cannot be solved by the factorable group method