Internal
problem
ID
[12090]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.5-2
Problem
number
:
18
Date
solved
:
Wednesday, March 05, 2025 at 04:15:09 PM
CAS
classification
:
[_Riccati]
ode:=x*diff(y(x),x) = a*ln(lambda*x)^m*y(x)^2+k*y(x)+a*b^2*x^(2*k)*ln(lambda*x)^m; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]==a*(Log[\[Lambda]*x])^m*y[x]^2+k*y[x]+a*b^2*x^(2*k)*(Log[\[Lambda]*x])^m; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") k = symbols("k") cg = symbols("cg") m = symbols("m") y = Function("y") ode = Eq(-a*b**2*x**(2*k)*log(cg*x)**m - a*y(x)**2*log(cg*x)**m - k*y(x) + x*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (a*b**2*x**(2*k)*log(cg*x)**m + a*y(x)**2*log(cg*x)**m + k*y(x))/x cannot be solved by the factorable group method