Internal
problem
ID
[12092]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.5-2
Problem
number
:
20
Date
solved
:
Wednesday, March 05, 2025 at 04:15:52 PM
CAS
classification
:
[_Riccati]
ode:=x*diff(y(x),x) = a*x^(2*n)*ln(x)*y(x)^2+(b*x^n*ln(x)-n)*y(x)+c*ln(x); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]==a*x^(2*n)*Log[x]*y[x]^2+(b*x^n*Log[x]-n)*y[x]+c*Log[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") n = symbols("n") y = Function("y") ode = Eq(-a*x**(2*n)*y(x)**2*log(x) - c*log(x) + x*Derivative(y(x), x) - (b*x**n*log(x) - n)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (a*x**(2*n)*y(x)**2*log(x) + b*x**n*y(x)*log(x) + c*log(x) - n*y(x))/x cannot be solved by the factorable group method