61.9.3 problem 3

Internal problem ID [12098]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-1. Equations with sine
Problem number : 3
Date solved : Wednesday, March 05, 2025 at 04:17:44 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=y^{2}+\lambda ^{2}+c \sin \left (\lambda x +a \right )^{n} \sin \left (\lambda x +b \right )^{-n -4} \end{align*}

Maple
ode:=diff(y(x),x) = y(x)^2+lambda^2+c*sin(lambda*x+a)^n*sin(lambda*x+b)^(-n-4); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],x]==y[x]^2+\[Lambda]^2+c*Sin[\[Lambda]*x+a]^n*Sin[\[Lambda]*x+b]^(-n-4); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
cg = symbols("cg") 
n = symbols("n") 
y = Function("y") 
ode = Eq(-c*sin(a + cg*x)**n*sin(b + cg*x)**(-n - 4) - cg**2 - y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -c*sin(a + cg*x)**n*sin(b + cg*x)**(-n - 4) - cg**2 - y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method