61.9.12 problem 12
Internal
problem
ID
[12107]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.6-1.
Equations
with
sine
Problem
number
:
12
Date
solved
:
Friday, March 14, 2025 at 04:06:37 AM
CAS
classification
:
[_Riccati]
\begin{align*} \left (a \sin \left (\lambda x \right )+b \right ) y^{\prime }&=y^{2}+c \sin \left (\mu x \right ) y-d^{2}+c d \sin \left (\mu x \right ) \end{align*}
✓ Maple. Time used: 0.006 (sec). Leaf size: 265
ode:=(a*sin(lambda*x)+b)*diff(y(x),x) = y(x)^2+c*sin(x*mu)*y(x)-d^2+c*d*sin(x*mu);
dsolve(ode,y(x), singsol=all);
\[
y = \frac {-d \left (\int \frac {{\mathrm e}^{\frac {c \left (\int \frac {\sin \left (\mu x \right )}{a \sin \left (\lambda x \right )+b}d x \right ) \lambda \sqrt {-a^{2}+b^{2}}-4 d \arctan \left (\frac {b \tan \left (\frac {\lambda x}{2}\right )+a}{\sqrt {-a^{2}+b^{2}}}\right )}{\lambda \sqrt {-a^{2}+b^{2}}}}}{a \sin \left (\lambda x \right )+b}d x \right )+d c_{1} -{\mathrm e}^{\frac {c \left (\int \frac {\sin \left (\mu x \right )}{a \sin \left (\lambda x \right )+b}d x \right ) \lambda \sqrt {-a^{2}+b^{2}}-4 d \arctan \left (\frac {b \tan \left (\frac {\lambda x}{2}\right )+a}{\sqrt {-a^{2}+b^{2}}}\right )}{\lambda \sqrt {-a^{2}+b^{2}}}}}{\int \frac {{\mathrm e}^{\frac {c \left (\int \frac {\sin \left (\mu x \right )}{a \sin \left (\lambda x \right )+b}d x \right ) \lambda \sqrt {-a^{2}+b^{2}}-4 d \arctan \left (\frac {b \tan \left (\frac {\lambda x}{2}\right )+a}{\sqrt {-a^{2}+b^{2}}}\right )}{\lambda \sqrt {-a^{2}+b^{2}}}}}{a \sin \left (\lambda x \right )+b}d x -c_{1}}
\]
✓ Mathematica. Time used: 4.172 (sec). Leaf size: 289
ode=(a*Sin[\[Lambda]*x]+b)*D[y[x],x]==y[x]^2+c*Sin[\[Mu]*x]*y[x]-d^2+c*d*Sin[\[Mu]*x];
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\[
\text {Solve}\left [\int _1^x-\frac {\exp \left (-\int _1^{K[2]}\frac {2 d-c \sin (\mu K[1])}{b+a \sin (\lambda K[1])}dK[1]\right ) (-d+c \sin (\mu K[2])+y(x))}{c \mu (b+a \sin (\lambda K[2])) (d+y(x))}dK[2]+\int _1^{y(x)}\left (\frac {\exp \left (-\int _1^x\frac {2 d-c \sin (\mu K[1])}{b+a \sin (\lambda K[1])}dK[1]\right )}{c \mu (d+K[3])^2}-\int _1^x\left (\frac {\exp \left (-\int _1^{K[2]}\frac {2 d-c \sin (\mu K[1])}{b+a \sin (\lambda K[1])}dK[1]\right ) (-d+K[3]+c \sin (\mu K[2]))}{c \mu (d+K[3])^2 (b+a \sin (\lambda K[2]))}-\frac {\exp \left (-\int _1^{K[2]}\frac {2 d-c \sin (\mu K[1])}{b+a \sin (\lambda K[1])}dK[1]\right )}{c \mu (d+K[3]) (b+a \sin (\lambda K[2]))}\right )dK[2]\right )dK[3]=c_1,y(x)\right ]
\]
✗ Sympy
from sympy import *
x = symbols("x")
a = symbols("a")
b = symbols("b")
c = symbols("c")
d = symbols("d")
cg = symbols("cg")
mu = symbols("mu")
y = Function("y")
ode = Eq(-c*d*sin(mu*x) - c*y(x)*sin(mu*x) + d**2 + (a*sin(cg*x) + b)*Derivative(y(x), x) - y(x)**2,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
Timed Out