61.24.78 problem 78

Internal problem ID [12491]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Problem number : 78
Date solved : Tuesday, January 28, 2025 at 03:17:36 AM
CAS classification : [[_Abel, `2nd type`, `class A`]]

\begin{align*} y^{\prime } y&=\left (2 \ln \left (x \right )^{2}+2 \ln \left (x \right )+a \right ) y+x \left (-\ln \left (x \right )^{4}-a \ln \left (x \right )^{2}+b \right ) \end{align*}

Solution by Maple

dsolve(y(x)*diff(y(x),x)=(2*(ln(x))^2+2*ln(x)+a)*y(x)+x*(- (ln(x))^4-a*(ln(x))^2+b),y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[y[x]*D[y[x],x]==(2*(Log[x])^2+2*Log[x]+a)*y[x]+x*(- (Log[x])^4-a*(Log[x])^2+b),y[x],x,IncludeSingularSolutions -> True]
 

Not solved