61.13.2 problem 48

Internal problem ID [12143]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-5. Equations containing combinations of trigonometric functions.
Problem number : 48
Date solved : Wednesday, March 05, 2025 at 04:52:12 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=a \sin \left (\lambda x \right ) y^{2}+b \sin \left (\lambda x \right ) \cos \left (\lambda x \right )^{n} \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 256
ode:=diff(y(x),x) = a*sin(lambda*x)*y(x)^2+b*sin(lambda*x)*cos(lambda*x)^n; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (-\sqrt {\frac {a b}{\lambda ^{2}}}\, \operatorname {BesselY}\left (\frac {n +3}{n +2}, \frac {2 \sqrt {\frac {a b}{\lambda ^{2}}}\, \cos \left (\lambda x \right )^{\frac {n}{2}+1}}{n +2}\right ) \cos \left (\lambda x \right )^{\frac {n}{2}+1} c_{1} -\operatorname {BesselJ}\left (\frac {n +3}{n +2}, \frac {2 \sqrt {\frac {a b}{\lambda ^{2}}}\, \cos \left (\lambda x \right )^{\frac {n}{2}+1}}{n +2}\right ) \sqrt {\frac {a b}{\lambda ^{2}}}\, \cos \left (\lambda x \right )^{\frac {n}{2}+1}+\operatorname {BesselY}\left (\frac {1}{n +2}, \frac {2 \sqrt {\frac {a b}{\lambda ^{2}}}\, \cos \left (\lambda x \right )^{\frac {n}{2}+1}}{n +2}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {1}{n +2}, \frac {2 \sqrt {\frac {a b}{\lambda ^{2}}}\, \cos \left (\lambda x \right )^{\frac {n}{2}+1}}{n +2}\right )\right ) \sec \left (\lambda x \right ) \lambda }{\left (\operatorname {BesselY}\left (\frac {1}{n +2}, \frac {2 \sqrt {\frac {a b}{\lambda ^{2}}}\, \cos \left (\lambda x \right )^{\frac {n}{2}+1}}{n +2}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {1}{n +2}, \frac {2 \sqrt {\frac {a b}{\lambda ^{2}}}\, \cos \left (\lambda x \right )^{\frac {n}{2}+1}}{n +2}\right )\right ) a} \]
Mathematica. Time used: 0.728 (sec). Leaf size: 695
ode=D[y[x],x]==a*Sin[\[Lambda]*x]*y[x]^2+b*Sin[\[Lambda]*x]*Cos[\[Lambda]*x]^n; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
cg = symbols("cg") 
n = symbols("n") 
y = Function("y") 
ode = Eq(-a*y(x)**2*sin(cg*x) - b*sin(cg*x)*cos(cg*x)**n + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -(a*y(x)**2 + b*cos(cg*x)**n)*sin(cg*x) + Derivative(y(x), x) cannot be solved by the factorable group method