Internal
problem
ID
[12147]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.6-5.
Equations
containing
combinations
of
trigonometric
functions.
Problem
number
:
52
Date
solved
:
Friday, March 14, 2025 at 04:24:49 AM
CAS
classification
:
[_Riccati]
ode:=sin(2*x)^(n+1)*diff(y(x),x) = a*y(x)^2*sin(x)^(2*n)+b*cos(x)^(2*n); dsolve(ode,y(x), singsol=all);
ode=Sin[2*x]^(n+1)*D[y[x],x]==a*y[x]^2*Sin[x]^(2*n)+b*Cos[x]^(2*n); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") n = symbols("n") y = Function("y") ode = Eq(-a*y(x)**2*sin(x)**(2*n) - b*cos(x)**(2*n) + sin(2*x)**(n + 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out