61.13.8 problem 54

Internal problem ID [12149]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-5. Equations containing combinations of trigonometric functions.
Problem number : 54
Date solved : Wednesday, March 05, 2025 at 04:55:32 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=y^{2}-m y \tan \left (x \right )+b^{2} \cos \left (x \right )^{2 m} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 226
ode:=diff(y(x),x) = y(x)^2-m*y(x)*tan(x)+b^2*cos(x)^(2*m); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (-\cos \left (x \right ) \sqrt {\cos \left (x \right )^{2 m -2}}\, \sin \left (b \sqrt {\cos \left (x \right )^{2 m -2}}\, \cos \left (x \right )^{-m +1} \sin \left (x \right ) \operatorname {hypergeom}\left (\left [\frac {1}{2}, -\frac {m}{2}+\frac {1}{2}\right ], \left [\frac {3}{2}\right ], \sin \left (x \right )^{2}\right )\right ) c_{1} +\cos \left (b \sqrt {\cos \left (x \right )^{2 m}}\, \cos \left (x \right )^{-m} \sin \left (x \right ) \operatorname {hypergeom}\left (\left [\frac {1}{2}, -\frac {m}{2}+\frac {1}{2}\right ], \left [\frac {3}{2}\right ], \sin \left (x \right )^{2}\right )\right ) \sqrt {\cos \left (x \right )^{2 m}}\right ) b \cos \left (x \right )^{-m +1} \left (\left (m -1\right ) \operatorname {hypergeom}\left (\left [\frac {3}{2}, -\frac {m}{2}+\frac {3}{2}\right ], \left [\frac {5}{2}\right ], \sin \left (x \right )^{2}\right ) \sin \left (x \right )^{2}-3 \operatorname {hypergeom}\left (\left [\frac {1}{2}, -\frac {m}{2}+\frac {1}{2}\right ], \left [\frac {3}{2}\right ], \sin \left (x \right )^{2}\right )\right )}{3 c_{1} \cos \left (b \sqrt {\cos \left (x \right )^{2 m -2}}\, \cos \left (x \right )^{-m +1} \sin \left (x \right ) \operatorname {hypergeom}\left (\left [\frac {1}{2}, -\frac {m}{2}+\frac {1}{2}\right ], \left [\frac {3}{2}\right ], \sin \left (x \right )^{2}\right )\right )+3 \sin \left (b \sqrt {\cos \left (x \right )^{2 m}}\, \cos \left (x \right )^{-m} \sin \left (x \right ) \operatorname {hypergeom}\left (\left [\frac {1}{2}, -\frac {m}{2}+\frac {1}{2}\right ], \left [\frac {3}{2}\right ], \sin \left (x \right )^{2}\right )\right )} \]
Mathematica. Time used: 2.588 (sec). Leaf size: 73
ode=D[y[x],x]==y[x]^2-m*y[x]*Tan[x]+b^2*Cos[x]^(2*m); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \sqrt {b^2} \cos ^m(x) \tan \left (-\frac {\sqrt {b^2} \sqrt {\sin ^2(x)} \csc (x) \cos ^{m+1}(x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {m+1}{2},\frac {m+3}{2},\cos ^2(x)\right )}{m+1}+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
b = symbols("b") 
m = symbols("m") 
y = Function("y") 
ode = Eq(-b**2*cos(x)**(2*m) + m*y(x)*tan(x) - y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -b**2*cos(x)**(2*m) + m*y(x)*tan(x) - y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method