Internal
problem
ID
[12151]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.6-5.
Equations
containing
combinations
of
trigonometric
functions.
Problem
number
:
56
Date
solved
:
Wednesday, March 05, 2025 at 04:56:44 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = y(x)^2-2*lambda^2*tan(x)^2-2*lambda^2*cot(lambda*x)^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==y[x]^2-2*\[Lambda]^2*Tan[x]^2-2*\[Lambda]^2*Cot[\[Lambda]*x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") cg = symbols("cg") y = Function("y") ode = Eq(2*cg**2*tan(x)**2 + 2*cg**2/tan(cg*x)**2 - y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE 2*cg**2*tan(x)**2 + 2*cg**2/tan(cg*x)**2 - y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method