7.10.16 problem 16

Internal problem ID [286]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.3 (Homogeneous equations with constant coefficients). Problems at page 134
Problem number : 16
Date solved : Tuesday, March 04, 2025 at 11:07:14 AM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 25
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+18*diff(diff(y(x),x),x)+81*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_4 x +c_2 \right ) \cos \left (3 x \right )+\sin \left (3 x \right ) \left (x c_3 +c_1 \right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 30
ode=D[y[x],{x,4}]+18*D[y[x],{x,2}]+81*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to (c_2 x+c_1) \cos (3 x)+(c_4 x+c_3) \sin (3 x) \]
Sympy. Time used: 0.095 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(81*y(x) + 18*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} x\right ) \sin {\left (3 x \right )} + \left (C_{3} + C_{4} x\right ) \cos {\left (3 x \right )} \]