Internal
problem
ID
[12180]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.7-3.
Equations
containing
arctangent.
Problem
number
:
26
Date
solved
:
Wednesday, March 05, 2025 at 05:19:15 PM
CAS
classification
:
[_Riccati]
ode:=x*diff(y(x),x) = lambda*arctan(x)^n*y(x)^2+k*y(x)+lambda*b^2*x^(2*k)*arctan(x)^n; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]==\[Lambda]*ArcTan[x]^n*y[x]^2+k*y[x]+\[Lambda]*b^2*x^(2*k)*ArcTan[x]^n; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") b = symbols("b") k = symbols("k") cg = symbols("cg") n = symbols("n") y = Function("y") ode = Eq(-b**2*cg*x**(2*k)*atan(x)**n - cg*y(x)**2*atan(x)**n - k*y(x) + x*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (b**2*cg*x**(2*k)*atan(x)**n + cg*y(x)**2*atan(x)**n + k*y(x))/x cannot be solved by the factorable group method